A Note on Nearly Sasakian Manifolds

نویسندگان

چکیده

A class of nearly Sasakian manifolds is considered in this paper. We discuss the geometric effects some symmetries on such and show, under a certain condition, that Ricci semi-symmetric subclass Einstein manifolds. prove Codazzi-type space form either manifold with constant ϕ-holomorphic sectional curvature H=1 or 5-dimensional proper H>1. also spectrum operator H2 generated by set simple eigenvalue 0 an multiplicity 4, we induce underlying carries Sasaki–Einstein structure. show there exist integrable distributions totally geodesic leaves same manifolds, are no forms curvature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Rigidity of 3-Sasakian Manifolds

Making use of the relations among 3-Sasakian manifolds, hypercomplex mani-folds and quaternionic KK ahler orbifolds, we prove that complete 3-Sasakian manifolds are rigid.

متن کامل

On Para-sasakian Manifolds

In ([1]), T. Adati and K. Matsumoto defined para-Sasakian and special para-Sasakian manifolds which are considered as special cases of an almost paracontact manifold introduced by I. Sato and K. Matsumoto ([10]). In the same paper, the authors studied conformally symmetric para-Sasakian manifolds and they proved that an ndimensional (n>3) conformally symmetric para-Sasakian manifold is conforma...

متن کامل

On $(epsilon)$ - Lorentzian para-Sasakian Manifolds

The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.

متن کامل

Vector Bundles on Sasakian Manifolds

We investigate the analog of holomorphic vector bundles in the context of Sasakian manifolds.

متن کامل

On Formality of Sasakian Manifolds

We investigate some topological properties, in particular formality, of compact Sasakian manifolds. Answering some questions raised by Boyer and Galicki, we prove that all higher (than three) Massey products on any compact Sasakian manifold vanish. Hence, higher Massey products do obstruct Sasakian structures. Using this we produce a method of constructing simply connected K-contact non-Sasakia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11122634